

ECVET Meeting MCAST Learning Outcomes Approach & Assessment

Lifelong Learning Programme

Where are we coming from ?

- Traditional Syllabi
 - Classical Time Constrained examinations
 - Certification depends on a % mark

Where are we now ?

- The learning outcomes and units of learning outcomes
 - A Range of assessment methods are used
 - Certification depends on all learning outcomes being achieved

Assessment as an Important Step

• It is the 'evidence' that the learner has acquired knowledge, skills and competencies.

• Shows that the learner has achieved the learning outcomes.

Method Development

- Partners are still working independently on this point but will be discussing and sharing best practices and concerns during the project workings.
- MCAST has put a lot of emphasis on assessment in the recent project workshop involving MCAST academic staff.
- Learning Outcomes are broken down into grading criteria to make sure that they are assessable.

Typical Approaches at MCAST

- Assessment as an integral part of the learning cycle.
- Assessment is no longer a specific event, separate from the teaching process.
- A formative approach to assessment is adopted.
- Assessment tasks use a range of methods however not excluding time constrained assessments.

Development Process

1. Established the need to move in that direction

- I. Inadequacy of traditional assessments in current learning outcomes approach
- II. Pressure from industry to minimise the skills gap
- 2. Build knowledge and capacity
 - I. Acquired a lot of experience from particular awarding bodies (BTEC , C&G)
 - II. Training staff and management
 - III. Start implementing a culture change

Development Process cont.

- 3. Gradually start implementing the change
 - I. Formative Assessment generally established
 - II. Curricula being re written
 - III. Audit and feedback mechanism set up

Module Outcome	Pass Criteria To achieve a pass grade the evidence must show that the learner is able to :		
LO 1 Design a complex sequential logic circuit specified by state tables and graphs	1.1 Analyze a Moore and Mealy state machine to derive the state table	1.2 Derive the state equations for a given state table	1.3 Use different encodings to implement a state machine
LO 2 Model and simulate combinational logic circuits using VHDL tools	2.1 Convert given combinational logic functions to VHDL code	2.2 Write a test bench to verify the operation of a combinational logic function	2.3 Simulate combinational logic circuits using VHDL
LO 3 Design state machines using ASM charts	3.1 Convert given sequential systems into their ASM equivalent	3.2 Convert an ASM chart into a state machine	2.4 Implement an ASM chart into its hardware equivalent
LO 4 implement sequential systems using VHDL tools and programmable logic devices	4.1 Model two sequential system using state machines or ASM charts	4.2 write a testbench to verify correct operation of some of the aspects of the model	Implement the models on a programmable logic device